RAJEEV GANDHI GOVT. POST GRADUATE COLLEGE, AMBIKAPUR, SURGUJA (CG), INDIA

Learning Outcomes based Curriculum Framework FOR FOUR YEAR UNDERGRADUATE PROGRAMME IN ELECTRONICS SCIENCE UNDER COICE BASED CREDIT SYSTEM (CBCS) PATTERN SESSION 2022-2023

DEPARTMENT OF PHYSICS

VISION

The vision of the Physics Department is to provide in proficiency both in depth understanding of principles and concept of Electronics Science, theoretical and experimental Electronics Science. The Department aims to enhance the students' knowledge in basic and applied Electronics Science. To inculcate aptitude for a research career in academia or industry by introducing advanced ideas and techniques that are applicable while emphasizing the underlying concepts of Electronics Science.

MISSION

- To impart quality education in Electronics Science such that they aim to become Scientists in reputed Research Organisations. To make the students effectively disseminate their knowledge in Electronics Science coming generations.
- Develop the capacity and know -how to apply principles/laws of Electronics Science to solve the problems. The ability to do and interpret the data obtained in experiments. To become a center of excellence and extend research facilities.
- Apply the Electronics Science knowledge for sustainable development useful for society. Assume responsibility and always practice ethical principles. To function effectively as individual as well as in a team.

Graduate attributes in Electronics Science

Some of the characteristic attributes of a graduate in Electronics Science are

Disciplinary knowledge and skills: Capable of demonstrating good knowledge and understanding of major concepts, theoretical principles and experimental findings in Electronics Science and its different subfields like Basic Circuit Theory and Network Analysis, Mathematics Foundation for Electronics, Semiconductor Devices, Applied Physics, Electronic Circuits, Digital Electronics and Verilog, C Programming and Data Structures

,Operational Amplifiers and Applications, Signals and Systems ,Electronic Instrumentation ,Microprocessors and Microcontrollers ,Electromagnetics , Communication Electronics , Photonics .

- o ability to use modern instrumentation and laboratory techniques to design and perform experiments is highly desirable in almost all the fields of Physics listed above in (i).
- Skilled communicator: Ability to transmit complex technical information relating all areas in Electronics Science in a clear and concise manner in writing and oral ability to present complex and technical concepts in a simple language for better understanding.
- Critical thinker and problem solver: Ability to employ critical thinking and efficient problem solving skills in all the basic areas of Electronics Science.
- Sense of inquiry: Capability for asking relevant/appropriate questions relating to the issues and problems in the field of Electronics Science, and planning, executing and reporting the results of a theoretical or experimental investigation.
- Team player/worker: Capable of working effectively in diverse teams in both classroom, laboratory, Electronics workshop and in industry and field-based situations.

Skilled project manager: Capable of identifying/mobilizing appropriate resources required for a project, and manage a project through to completion, while observing responsible and ethical scientific conduct; and safety and laboratory hygiene regulations and practices.

Digitally Efficient: Capable of using computers for simulation studies

in Electronics Science and computation and appropriate software for numerical and statistical analysis of data, and employing modern elibrary search tools like Inflibnet, various websites of the renowned Physics labs in countries like the US A, Europe, Japan etc. to locate, retrieve, and evaluate Electronics information.

Ethical awareness / reasoning: The graduate should be capable of demonstrating ability to think

- and analyze rationally with modern and scientific outlook and identify ethical issues related to one's work, avoid unethical behavior such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights, and adopting objectives, unbiased and truthful actions in all aspects of work
- National and international perspective: The graduates should be able to develop a national as well as international perspective for their career in the chosen field of the academic activities. They should prepare themselves during their most formative years for their appropriate role in contributing towards the national development and projecting our national priorities at the international level pertaining to their field of interest and future expertise.
- □ **Lifelong learners:** Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and reskilling in all areas of Electronics Science.

Qualification descriptors for a UG programs in Electronics Science

The qualification descriptors for a **Three year under rgraduate programme** in Electronics Science mayinclude the following.

The graduates should be able to:

Demonstrate

 \square

 a fundamental/systematic or coherent understanding of the academic field of Electronics Science, its different learning areas like Basic Circuit Theory and Network Analysis , Mathematics Foundation for Electronics, Semiconductor Devices, Applied Physics , Electronic Circuits , Digital Electronics and Verilog, CProgramming and Data Structures ,Operational Amplifiers and Applications, Signals and Systems ,Electronic Instrumentation ,Microprocessors and Microcontrollers ,Electromagnetics , Communication Electronics , Photonics .

(i) and applications, and its linkages with related disciplinary areas/subjects like Chemistry, Mathematics, Life sciences, Environmental sciences, Atmospheric Science, Computer science, Information Technology;

(ii) procedural knowledge that creates different types of professionals related to different areas of study in Electronics Science outlined above, including research and development, teaching and government and public service;

(iii) skills in areas related to specialization area relating the subfields and current developments in the academic field of Electronics Science.

- Use knowledge, understanding and skills required for identifying problems and issues relating to Electronics Science, collection of relevant quantitative and/or qualitative data drawing on a wide range of sources from various Electronics laboratories of the world, and their application, analysis and evaluation using methodologies as appropriate to Electronics Science for formulating new theories and concepts.
- Communicate the results of studies undertaken accurately in a range of different contexts using the main concepts, constructs and techniques of Electronics Science. Develop communication abilities to present these results in technical as well as popular science meetings organized in various universities and other private organizations.
- Ability to meet one's own learning needs, drawing on a range of current

research and development work and professional materials, and interaction with other Electronics Scientist around the world.

- Apply one's knowledge of Electronics and theoretical and laboratory skills to new/unfamiliar contexts to identify and analyse problems and issues and solve complex problems in Electronics and related areas with well-defined solutions.
- Demonstrate Electronics -related technological skills that are relevant to Electronics -related job trades and employment opportunities.

The B.Sc. (Physics) programme is a three-year course divided into six semesters.

The syllabus and schemes of examination are detailed herewith.

ACADEMIC PROGRAMMES & SCHEMES B.Sc. (Electronics)

FIRST SEMESTER:

er	Paper aper Code (Paper/Subjects)			Semeste Continuous rExam Comprehensive Evaluation(CCE) (Internal Evaluation)				lotal		
Paper	Paper Code	Course (Pape	Max. Marks	Min.	Test	Seminar	Assignment	Total	Min.	Grand Total
I.	ELE 101	NETWORK ANALYSIS & ANALOG ELETRINICS	50	18	08	08	09	25	09	75

١

SECOND SEMESTER:

ber	Code er/Subjects)		arks aper Code		Continuous Comprehensive Evaluation(CCE) (Internal Evaluation)				Total	
Paper	Paper Code	Course (Pape	Max. Marks	Min.	Test	Seminar	Assignment	Total	Min.	Grand Total
Ι	ELE 201	LINEAR & DIGITAL INTEGRATED CIRCUIT	50	18	08	08	09	25	09	75
II	ELE 202	ELECTRONICS PRACTICAL LAB-I	50	18	_	-	-	-	-	50

THIRD SEMESTER:

)er	raper per Code Paper/Subjects)			Semeste rContinuous ComprehensiverComprehensiveExamEvaluation(CCE)(Internal Evaluation)					Total	
Paper	Paper Code	Course (Pape	Max. Marks	Min.	Test	Seminar	Assignment	Total	Min.	Grand
	ELE 301	COMMUNICA TION ELECTRONIC S	50	18	08	08	09	25	09	75

FOURTH SEMESTER:

)er	oer Code er/Subjects)		aber Code aber Code arks Baber/Subjects) arks		Continuous Comprehensive Evaluation(CCE) (Internal Evaluation)				Total	
Paper	Paper Code	Course (Pap	Max. Marks	Min.	Test	Seminar	Assignment	Total	Min.	Grand
I.	ELE 401	MICROPROCE SSOR & MICROCONTR OLLER	50	18	08	08	09	25	09	75
II.	ELE 402	ELECTRONICS PRACTICAL LAB-II	50	18	-	-	-	-	-	50

FIFTH SEMESTER:

ler	Paper aper Code (Paper/Subjects)]	neste r am	Continuous Comprehensive Evaluation(CCE) (Internal Evaluation)				Total	
Paper	Paper Code	Course (Pape	Max. Marks	Min.	Test	Seminar	Assignment	Total	Min.	Grand '
Ι	ELE 501	INDUSTRIAL ELECTRONIC S	50	18	08	08	09	25	09	75

SIXTH SEMESTER:

	aper Code (Paper/Subjects)		Semest rExar			Continuous Comprehensive Evaluation(CCE)					_
er	Code	rr/Su			(Interna	al Evalu	atior	1)	Tota	
Paper	Paper Code	Course (Pape	Max. Marks	Min.	Test	Seminar	Assignment	Total	Min.	Grand Total	
Ι	ELE 601	MOBILE APPLICATION PROGRAMMIN G & INTRODUCTION TO VHDL	50	18	08	08	09	25	09	75	
II	ELE 602	ELECTRONICS PRACTICAL LAB-III	50	18	-	-	-	-	-	50	

B.Sc. Semester-I

Paper-I: NETWORK ANALYSIS & ANALOG ELETRINICS

Course Outcomes

After completing the course the students will able to: -

- a. the concepts of electromagnetic induction and its applications and eddy currents,
- b. resonant circuits with RC, LR and LCR combinations and the power factor of an AC circuit,
- c. power generation, three phase AC, DC motors and induction motors,
- d. theory of electromagnetic waves and Maxwell's equations.
- e. Network theorem, two port network, ac and dc analysis.
- f. basics of circuit theory and network analysis
- g. resonant circuits with RC, LR and LCR combinations and the power factor of an AC circuit,

B.Sc. (I UD1	ELECTRO	DNICS)	FIR	ST SEMEST	ER	COURSE CODE:
	R CODE:	ELE101				
PAPE	R TITLE:	NETWOR	RK ANALY	SIS & ANAI	OG ELETRIN	NICS
MARK		-				0.0
THEO Scheme	KY: e of marks	<u>50</u>		$\mathbf{CCA}:30$	PRACTICAL	.: 00
benefit		•				
			-	• •	marks each to l	
		• • •		questions carr	ying 2 marks ea	ach to be asked.
		t 70-100wo	<i>,</i>	questions car	rving 3 marks a	each to be asked.
		t 200-250 w		questions can	rying 5 marks e	ach to be asked.
iv. L	long answe	er type quest		estions carryin	ng 08 marks eac	h to be asked. (Word
li	imit 500-6	, ,	4 617	1, 1,0		
						irchhoff's Current Law, ar and Delta networks,
UNIT-1 SHours	StarDelta	1 Conversio	n. Principa	l of Duality.	Superposition	Theorem. Thevenin's
INI Ho						mum Power Transfer
U 15	Theorem	. Two Port r	Networks: n	, y and z parai	neters and their	conversion.
						(Ideal and practical)-
			-	•	-	nd I-V characteristics. Quiescent (Q) point.
		•			•	reakdown. Qualitative
		chottky diod				
						r tapped and bridge),
T-2 urs		•	•		ble factor and eff	•
UNIJ 20Hou		-		-		veform, and working.
U 20	U	on for load a	•	-	er uloue as vo	Shage regulator, and
s s	Bipolar .	Junction T	ransistor: F	Review of the		of transistor in CE and
UNIT-3 20 Hours	CB confi	gurations, R	egions of or	peration (activ	e, cut off and sa le and Q point	turation), Current gains
IN H (u and p. i			i p. de load ill	e and Q point	
1 2(
						xed Bias and Voltage S. Transistor as a two
4 s						ysis of single stage CE
UNIT-4 20Hrs			Output impe	dance, Curren	t and Voltage g	ains. Class A, B and C
UN 20	Amplifier Cascade		e rs : Two s	tage RC Co	upled Amplifie	r and its Frequency
	Response			0	. <u> </u>	1

UNIT- 5 15Hrs	Feedback in Amplifiers: Concept of feedback, negative and positive feedback, advantages of negative feedback (Qualitative only). (2 Lectures) Sinusoidal Oscillators: Barkhausen criterion for sustained oscillations. Phase shift and Colpitt's oscillator. Determination of Frequency and Condition of oscillation. (5 Lectures) Unipolar Devices: JFET. Construction, working and I-V characteristics (output and
SUGGESTED READINGS	 Electric Circuits, S. A. Nasar, Schaum's outline series, Tata McGraw Hill (2004) Electrical Circuits, M. Nahvi & J. Edminister, Schaum's Outline Series, Tata McGraw-Hill (2005) Electrical Circuits, K.A. Smith and R.E. Alley, 2014, Cambridge University Press Network, Lines and Fields, J.D.Ryder, Prentice Hall of India. Electronic Devices and Circuits, David A. Bell, 5th Edition 2015, Oxford University Press. Electronic Circuits: Discrete and Integrated, D.L. Schilling and C. Belove, Tata McGraw Hill Microelectronic circuits, A.S. Sedra, K.C. Smith, A.N. Chandorkar, 2014, 6th Edn., Oxford University Press. J. Millman and C. C. Halkias, Integrated Electronics, Tata McGraw Hill (2001)
SUG	 J. J. Cathey, 2000 Solved Problems in Electronics, Schaum's outline Series, Tata McGraw Hill (1991

B.Sc. Semester-II

Paper-I: LINEAR AND DIGITAL INTEGRATED CIRCUITS

Course Outcomes

After completing the course the students will able to: -

a. number systems and the interconversion between them, Boolean algebra and the simplification of logic circuits using Karnaugh map,

b. arithmetic circuits, multiplexing and demultiplexing operations and a few logic families, c. various flip-flops, design of registers and counters, and the architecture and applications of Timer 555, and

d. A/D and D/A converters and their accuracy resolution and VHDL

B.Sc. (I UD1	ELECTRONICS)	SECOND SEME	STER	COURSE CODE:
PAPE	CODE: ELE 201			
PAPER	R TITLE: LINEAR AN	D DIGITAL INTEGH	RATED CIRCU	JITS
MARK		CCA - 20		. 00
THEO Scheme	RY: 50 e of marks:	CCA: 30	PRACTICAL	.: 00
Senem				
	bjective type questions:			
	Short answer type quest	-	ying 2 marks e	ach to be asked.
`	Word limit 70-100word Iiddle answer type ques	,	ruing 3 marks o	ach to be asked
	Word limit 200-250 wor		Tynig 5 marks e	ach to be asked.
viii. L	ong answer type question		ng 08 marks eac	h to be asked. (Word
li	mit 500-600 words).	ma (Dlash har annua	ch). Character	istics of an Ideal and
	Practical Operational	ers (Black box approa Amplifier (IC 741), (Open and close	d loop configuration.
T-1 urs	Frequency Response. C	CMRR. Slew Rate and c	concept of Virtua	al Ground.
UNIT-1 SHours	Applications of Op-A	mps: (1) Inverting and the ifier, (3) Differentiated	non-inverting an (4) Integrat	nplifiers, (2) Summing
U 15		ator and Zero-crossing		
	high pass Butterworth	filter (1st order only)		
	Number System and systems base convers	Codes: Decimal, Bin ions Representation of	hary, Octal and f signed and un	Hexadecimal number signed numbers, BCD
	code. Binary, octal	and hexadecimal arith	nmetic; addition	n, subtraction by 2's
UNIT-2 20Hours	complement method, n	ultiplication.	bles of OR ANI	D, NOT, NOR, NAND,
JH(XOR, XNOR, Universa	al Gates, Basic postulate	es and fundament	tal theorems of Boolean
L 2(algebra.			
	Combinational Logic	Analysis and Desig	gn : Standard r	epresentation of logic
	functions (SOP and PO	S), Minimization Tech	niques (Karnaug	sh map minimization up
.3 rs	to 4 variables for SOP)		nd Full Addar U	Jolf and Full Subtractor
IT- Iou	4- bit binary Adder/Sul		lia full Addel. H	Ialf and Full Subtractor,
UNIT-3 20 Hours		iits: Multiplexers, De-r	nultiplexers, De	coders, Encoders.
5				
				el and Edge Triggered)
[-4 rs		Clear operations. Race-	around condition	ns in JK Flip-Flop.
UNIT-4 20Hrs	Masterslave JK Flip-Fl Shift registers: Serial		-Parallel-out, Pa	rallel-in-Serial-out and
D		Shift Registers (only u		

UNIT- 5 15Hrs	D-A and A-D Conversion: 4 bit binary weighted and R-2R D-A converters, circuit and working. Accuracy and Resolution. A-D conversion characteristics, successive approximation ADC. (Mention of relevant ICs for all)
SUGGESTE D DFADINCS	 OP-Amps and Linear Integrated Circuit, R.A. Gayakwad, 4th edition, 2000, Prentice Hall Operational Amplifiers and Linear ICs, David A. Bell, 3rd Edition, 2011, Oxford University Press. Digital Principles and Applications, A.P. Malvino, D.P. Leach and Saha, 7th Ed., 2011, Tata McGraw Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill. Thomas L. Flyod, Digital Fundamentals, Pearson Education Asia (1994) Digital Principles, R.L.Tokheim, Schaum's outline series, Tata McGraw-Hill (1994)

B.Sc. (ELECTRONICS) SECOND SEMESTER PAPER CODE: ELE 202 **COURSE CODE: UD1**

DADED TITLE, ELECTRO

PAPER TITLE: ELECTRONICS PRACTICAL LAB-I

MARKS:50 THEORY: 00 PRACTICAL: 50

GROUP-A

<u>LIST OF</u> <u>EXPERIMENTS</u>

ELECTRONICS LAB: DSC 1A LAB: NETWORK ANALYSIS AND ANALOG ELECTRONICS LAB 60 Periods

AT LEAST 06 EXPERIMENTS FROM THE FOLLOWING BESIDES #1

1. To familiarize with basic electronic components (R, C, L, diodes, transistors), digital Multimeter, Function Generator and Oscilloscope.

2. Measurement of Amplitude, Frequency & Phase difference using Oscilloscope.

3. Verification of (a) Thevenin's theorem and (b) Norton's theorem.

4. Verification of (a) Superposition Theorem and (b) Reciprocity Theorem.

5. Verification of the Maximum Power Transfer Theorem.

6. Study of the I-V Characteristics of (a) p-n junction Diode, and (b) Zener diode.

7. Study of (a) Half wave rectifier and (b) Full wave rectifier (FWR).

8. Study the effect of (a) C- filter and (b) Zener regulator on the output of FWR.

9. Study of the I-V Characteristics of UJT and design relaxation oscillator..10. Study of the output and transfer I-V characteristics of common source JFET.

11. Study of Fixed Bias and Voltage divider bias configuration for CE transistor.

12. Design of a Single Stage CE amplifier of given gain.

13. Study of the RC Phase Shift Oscillator.

14. Study the Colpitt's oscillator

GROUP-B

LIST OF EXPERIMENTS

ELECTRONICS LAB- DSC 1B LAB: LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB 60 Periods At least 04 experiments each from section A, B and C

Section-A: Op-Amp. Circuits (Hardware design)

1. To design an inverting amplifier using Op-amp (741, 351) for dc voltage of given gain.

2. (a) To design inverting amplifier using Op-amp (741, 351) and study its frequency response.

(b) To design non-inverting amplifier using Op-amp (741, 351) and study frequency response.

3. (a) To add two dc voltages using Op-Amp in inverting and non-inverting mode.

(b) To study the zero-crossing detector and comparator.

4. To design a precision Differential amplifier of given I/O specification using OpAmplifier.

5. To investigate the use of an op-amp as an Integrator.

6. To investigate the use of an op-amp as a Differentiator.

7. To design a Wien bridge oscillator for given frequency using an Op-Amplifier.

8. To design a circuit to simulate the solution of simultaneous equation and 1st/2nd order differential equation.

9. Design a Butterworth Low Pass active Filter (1st order) and study frequency response.

10. Design a Butterworth High Pass active Filter (1st order) and study frequency response.

11. Design a digital to analog converter (DAC) of given specifications.

Section-B: Digital circuits (Hardware design)

1. (a) To design a combinational logic system for a specified Truth Table.(b) To convert Boolean expression into logic circuit & design it using logic gate ICs.

(c) To minimize a given logic circuit. 2. Half Adder and Full Adder.

3. Half Subtractor and Full Subtractor.

4. 4 bit binary adder and adder-subtractor using Full adder IC.

5. To design a seven segment decoder.

6. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.

7. To build JK Master-slave flip-flop using Flip-Flop ICs. 8. To build a

Counter using D-type/JK Flip-Flop ICs and study timing diagram. 9. To make a Shift Register (serial-in and serial-out) using D-type/JK Flip-Flop ICs

B.Sc. Semester-III

Paper-I: : COMMUNICATION ELECTRONICS

Course Outcomes

After completing the course the students will able to: -

a. fundamentals of noise, their characteristics and types,

b. amplitude modulation and demodulation and radio wave transmission and reception,

c. frequency modulation and demodulation and FM radio wave transmission and reception,

- d. Principle of analog and digital pulse modulation and their applications,
- e. transmission and detection of digital signals.

	ELECRTRONICS)	THIRD SEMES	TER COURSE CO	ODE:
UD1 PAPE	R CODE: ELE 301			
PAPE	R TITLE: : COMMUNIC	ATION ELECTRO	ONICS	
MARK				
THEO Scheme	RY: 50 e of marks:	CCA: 30	PRACTICAL: 00	
Benefit	c of marks.			
	Objective type questions: 08	1 2 2		
	••••	-	rying 2 marks each to be aske	d.
`	Word limit 70-100words). Aiddle answer type questic		rying 3 marks each to be aske	h
	Word limit 200-250 words	-	Tyme 5 marks each to be aske	u.
iv. L	Long answer type questions		ng 08 marks each to be asked.	Word
	imit 500-600 words). Electronic communicati	on: Introduction to	communication – means and	modes
	Need for modulation. Blo	ock diagram of an e	lectronic communication system	m. Brief
[-1 urs	idea of frequency alloca	ation for radio com	nmunication system in India and designations and usage. ((TRAI).
UNIT-1 SHours	and base-band signals. Co			.1141111015
U 151		1		
	Analog Modulation: A	mplitude Modulatio	on, modulation index and fre	quency
	-		tion), Amplitude Demodulation	-
	·		generation and detection. Fre	
			M), modulation index and free , Generation of FM using VC	
T-2 urs			uper heterodyne receiver.	, 1 WI
noE			apacity, Sampling theorem,	Basic
UNI 20Ho	-	PM, modulation and	d detection technique for PAN	A only,
	Multiplexing.			<u> </u>
	-	-	transmission, Pulse Code Mod	
	-	-	mpling, Quantization and En Frequency Shift Keying (FSK)	-
UNIT-3 20 Hours	Shift Keying (PSK), and	• • •		, 1 11450
U 20]		-		
	Introduction to Co	mmunication and	l Navigation systems:	Satellite
4	Communication- Introdu	ction, need, Geosyn	chronous satellite orbits, geost	ationary
UNIT-4 20Hrs			s. Satellite visibility, transpond ock diagram of earth station. Up	
UN. 201	downlink.	, simplified of	angran or on an buildin op	und
-				

UNIT- 5 15Hrs	Mobile Telephony System – Basic concept of mobile communication, frequency bands used in mobile communication, concept of cell sectoring and cell splitting, SIM number, IMEI number, need for data encryption, architecture (block diagram) of mobile communication network, idea of GSM, CDMA, TDMA and FDMA technologies, simplified block diagram of mobile phone handset, 2G, 3G and 4G concepts (qualitative only). GPS navigation system (qualitative idea only
SUGGESTED READINGS	 Electronic Communications, D. Roddy and J. Coolen, Pearson Education India. Advanced Electronics Communication Systems- Tomasi, 6th edition, Prentice Hall. Modern Digital and Analog Communication Systems, B.P. Lathi, 4th Edition, 2011, Oxford University Press. Electronic Communication systems, G. Kennedy, 3rd Edn., 1999, Tata McGraw Hill. Principles of Electronic communication systems – Frenzel, 3rd edition, McGraw Hill Communication Systems, S. Haykin, 2006, Wiley India Electronic Communication system, Blake, Cengage Learning, 5th edition. Wireless communications, Andrea Goldsmith, 2015, Cambridge University Press

B.Sc. Semester-IV

Paper-I: MICROPROCESSOR AND MICROCONTROLLER

Course Outcomes

After completing the course the students will able to: -

a) architecture of 8085 microprocessor, instruction sets, addressing modes and programming exercises

b) stacks and stack operations

c) interfacing memory devices

d) interfacing 8085 microprocessor with input/output devices, and

e) interfacing programmable peripheral devices

f) the architecture of 8051 Micro-controller

g) the interrupts, counter, timer and serial data transmission

h) the instruction set and simple programs

i) interfacing peripherals

B.Sc. (H UD1	ELECTRONICS)	FOURTH SEMEST	ER	COURSE CODE:	
PAPER CODE: ELE 401					
PAPER TITLE: MICROPROCESSOR AND MICROCONTROLLER					
MARK THEO			PRACTICAL:	00	
	e of marks:		RACIICAL:	00	
vi. S		08 questions carrying 1 n ions: 03 questions carrying			
		tions: 04 questions carry	ing 3 marks eacl	h to be asked.	
C	Word limit 200-250 wor	rds).	-		
viii. L li	ong answer type question mit 500-600 words).	ons: 03 questions carrying	08 marks each t	o be asked. (Word	
UNIT-1 15Hours	Microcomputer Orga and ROM). Compute Interfacing. Memory N 8085 Microprocessor	nization: Input/Output D r memory. Memory org Iap. Architecture: Main featu and address buses. Regis	ganization & ad	ldressing. Memory ck diagram. Pin-out	
UNIT-2 20Hours	including stacks. Arith delay loops. Timing &	Instruction classification metic, logical, branch, and Control circuitry. Timin AVI. Hardware and software	d control instructing states. Instruc	tions). Subroutines,	
UNIT-3 20 Hours	architecture of 8051, ov Program Counter and	: Introduction and block verview of 8051 family, 80 ROM memory map, Data PSW) register, Jump, loop	51 assembly lang a types and direct	guage programming, ctives, Flag bits and	
UNIT-4 20Hrs	of 8051 microcontrol	nming: Introduction of I/0 ler, I/O port pins descr 51 (using assembly la	iption & their	functions, I/O port	
UNIT- 5 15Hrs	various addressing mode, arithmetic and lo 8051 programming i	8051 addressing modes an odes, assembly language ogic instructions, n C: for time delay and l erations, for ASCII and B	instructions usi	ing each addressing nd manipulation, for	

	• Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, Prentice Hall.
	• Embedded Systems: Architecture, Programming & Design, Raj Kamal, 2008, Tata McGraw Hill 13
	• The 8051 Microcontroller and Embedded Systems Using Assembly and C, M.A. Mazidi, J.G. Mazidi, and R.D. McKinlay, 2nd Ed., 2007, Pearson Education India.
TED	• Microprocessor and Microcontrollers, N. Senthil Kumar, 2010, Oxford University Press
SUGGESTEI READINGS	• 8051 microcontrollers, Satish Shah, 2010, Oxford University Press.
SU RI	• Embedded Systems: Design & applications, S.F. Barrett, 2008, Pearson Education India
	• Introduction to embedded system, K.V. Shibu, 1st edition, 2009, McGraw Hill
	• Embedded Microcomputer systems: Real time interfacing, J.W. Valvano 2011, Cengage Learning .

FOURTH SEMESTER **COURSE CODE: UD1 B.Sc. (ELECTRONICS) PAPER CODE: ELE 402** PAPER TITLE: ELECTRONICS PRACTICAL LAB-II MARKS:50 00 **THEORY: PRACTICAL: 50** LIST OF EXPERIMENTS **ELECTRONICS LAB-DSC 1C LAB: COMMUNICATION ELECTRONICS LAB 60** Periods **AT LEAST 05 EXPERIMENTS FROM THE FOLLOWING** 1. To design an Amplitude Modulator using Transistor 2. To study envelope detector for demodulation of AM signal 3. To study FM - Generator and Detector circuit 4. To study AM Transmitter and Receiver 5. To study FM Transmitter and Receiver 6. To study Time Division Multiplexing (TDM) 7. To study Pulse Amplitude Modulation (PAM) 8. To study Pulse Width Modulation (PWM) 9. To study Pulse Position Modulation (PPM) 10. To study ASK, PSK and FSK modulators. **ELECRONICS LAB-DSC 1D LAB: MICROPROCESSOR AND** MICROCONTROLLER LAB **60** Periods At least 06 experiments each from Section-A and Section-B Section-A: Programs using 8085 Microprocessor 1. Addition and subtraction of numbers using direct addressing mode 2. Addition and subtraction of numbers using indirect addressing mode 3. Multiplication by repeated addition. 4. Division by repeated subtraction. 5. Handling of 16-bit Numbers. 6. Use of CALL and RETURN Instruction. 7. Block data handling. 8. Other programs (e.g. Parity Check, using interrupts, etc.). Section-B: Experiments using 8051 microcontroller: 1. To find that the given numbers is prime or not. 2. To find the factorial of a number. 3. Write a program to make the two numbers equal by increasing the smallest number and decreasing the largest number.

4. Use one of the four ports of 8051 for O/P interfaced to eight LED's. Simulate binary counter (8 bit) on LED's .

5. Program to glow the first four LEDs then next four using TIMER application.

6. Program to rotate the contents of the accumulator first right and then left.

7. Program to run a countdown from 9-0 in the seven segment LED display.

8. To interface seven segment LED display with 8051 microcontroller and display 'HELP' in the seven segment LED display.

9. To toggle '1234' as '1324' in the seven segment LED display.

10. Interface stepper motor with 8051 and write a program to move the motor through a given angle in clock wise or counter clockwise direction.

11. Application of embedded systems: Temperature measurement & display on LCD

B.Sc. Semester-V

Paper-I : Industrial Electronics

Course Outcomes

After completing the course the students will able to: -

- 1. Know main aspects of the inadequacies of classical mechanics and understand historical development of quantum mechanics and ability to discuss and interpret experiments that reveal the dual nature of matter.
- 2. Understand the theory of quantum measurements, wave packets and uncertainty principle.
- Understand the central concepts of quantum mechanics: wave functions, momentum and energy operator, the Schrodinger equation, time dependent and time independent cases, probability density and the normalization techniques, skill development on problem solving

e.g. one dimensional rigid box, tunneling through potential barrier, step potential, rectangular barrier.

- 4. Understanding the properties of nuclei like density, size, binding energy, nuclear forces and structure of atomic nucleus, liquid drop model and nuclear shell model and mass formula.
- 5. Ability to calculate the decay rates and lifetime of radioactive decays like alpha, beta, gammadecay. Neutrinos and its properties and role in theory of beta decay.
- 6. Understand fission and fusion well as nuclear processes to produce nuclear energy innuclear reactor and stellar energy in stars.
- 7. In the laboratory course, the students will get opportunity to perform the following experiments
- 8. Measurement of Planck's constant by more than one method.
- 9. Verification of the photoelectric effect and determination of the work Function of a metal.
- 10. Determination of the charge of electron and e/m of electron.
- 11. Determination of the ionization potential of atoms.
- 12. Determine the wavelength of the emission lines in the spectrum of Hydrogen atom.
- 13. Plan and Execute 2-3 group projects in the field of Atomic, Molecular and Nuclear Physics in collaboration with other institutions, if, possible where advanced facilities are available.

B.Sc. (ELECTRONICS)	

FIFTH SEMESTER

COURSE CODE:

PAPER CODE: ELE501

PAPER TITLE: : Industrial Electronics MARKS:75 **THEORY:** 50 **CCA: 30 PRACTICAL: 00** Scheme of marks: Objective type questions: 08 questions carrying 1 marks each to be asked. ix. Short answer type questions: 03 questions carrying 2 marks each to be asked. X. (Word limit 70-100words). Middle answer type questions: 04 questions carrying 3 marks each to be asked. xi. (Word limit 200-250 words). Long answer type questions: 03 questions carrying 08 marks each to be asked. (Word xii. limit 500-600 words). Thyristors: Principles and operations of SCR, voltage amplifier gate characteristics of SCR, characteristics of two transistor models, Thyristor construction, rectifier circuit using SCR, GTO, Operation and characteristics of DIAC, TRIAC, Silicon **UNIT-1 5Hours** Controlled Switch, Silicon Unilateral Switch, Silicon Bilateral Switch and Light activated SCR. Turn ON/OFF Mechanism: Basics of turnon and turn off methods Applications of SCR: Multiple connections of SCR, Series operation, Triggering of series connected SCR, Parallel operation, Triggering of parallel connected SCR, SCR di/dt calculation, Snubber circuit, dv/dt **UNIT-2** 20Hours calculation across SCR, Types of converters, Full wave controlled rectifier with resistive load, FWCR with inductive load, FWCR with freewheeling diode. **Inverters:** Types of inverters, Single phase bridge inverter, Mc Murray impulse communication inverter, Single phase half bridge voltage source inverter, Single phase full bridge voltage inverter, Step down choppers, Step up choppers, Chopper classification. **Other Applications:** Induction heating, Resistance welding, Over voltage protection, Zero voltage switch, SMPS, UPS, DC circuit breaker, Battery 20 Hours **UNIT-3** charger, AC static switch, DC static switch, Time delay, Fan regulator using TRIAC .

	PCB Fundamentals: PCB Advantage , components of PCB, Electronics	
	components, IC's Mount Devices (SMD). Classification of PCB - single, double,	
	multilayer and flexible boards, Manufacturing of PCB, PCB standards.	
UNIT-4 20Hrs	Schematic & Layout Design: Schematic diagram, General, Mechanical and	
	Electrical design considerations, Placing and Mounting of components, Conductor	
	spacing, routing guidelines, heat sinks and package density, Net list, creating	
HO	components for library, Tracks, Pads, Vias, power plane, grounding, Lead cutting	
	and Soldering Techniques, Testing and quality controls. PCB Technology Trends,	
	Environmental concerns in PCB industry.	
UNIT- 5 s	Analog/Digital Multimeter: Analog multimeter, AC and DC measurment,	
	conversion of analog output to digital form (A/D), Dual ramp A/D converter, digital	
	measuring system, multimeter block diagram, voltage, current and resistance	
	measurments. Frequency counter: Elements of electronic counter, decade counting	
	assembly temperature compensated prystal oscillator, universal counter,	
U 5Hrs	measurement modes; frequency measurement, period measurement, time interval	
15	measurement, measurement errors: gating errors, time base error, trigger level error.	

	Domomonuthy "Thyrigton and their applications" Fast M. (D. 11, 1 1
	Ramamourthy "Thyristor and their applications" East-West Publishers, 2nd Edition
	2. Shamir K Datta "Power Electronics and Controllers" PHI, 3rd Edition
	3. Power Electronics: Devices, Circuits and Industrial Applications
	4. V.R. MoorthyOxford University Press; First Edition edition
NG.	5. Printed circuit Board Design & Technology by Walter C. Bosshart,
DI	Tata McGrawHill.
ΈA	6. Printed Circuit Board Design, Fabrication, Assembly & Testing by
DR	R.S.Khandpur, TATA McGraw Hill Publisher
SUGGESTED READINGS	7. Electronics Instrumentation H.S.Kalsi McGraw Hill Education; 3 edition (1 July 2017)
3G	8. Modern Electronic Instrumentation and Measurement Techniques Albert
SUC	Helfrick and William D Cooper Prentice Hall India Learning Private
	Limited
	9. Electronic Instrumentation and Measurements David A. Bell Oxford
	University Press India; Third edition (12 April 2013)
	1.

B.Sc. Semester-VI

Paper-II: Mobile Application Programming and Introduction to VHDL

Course Outcomes

After completing the course the students will able to : -

Android, Advantages and Future of Android, Tools and about Android SDK.

Android Development Environment.

Views and Layouts, Buttons, Menus, and Dialogs, Graphics Resources in Android.

Handling User Interface (UI) Events

iOS Development Environment: Windows phone Environment Introduction to VHDL

B.Sc. (ELECTRONICS) UD1 SIXTH SEMESTER

PAPER CODE: ELE601

PAPER TITLE: Mobile Application Programming and Introduction to VHDL MARKS:75 **THEORY:** CCA: 30 PRACTICAL: 00 **50** Scheme of marks: Objective type questions: 08 questions carrying 1 marks each to be asked. xiii. Short answer type questions: 03 questions carrying 2 marks each to be asked. xiv. (Word limit 70-100words). Middle answer type questions: 04 questions carrying 3 marks each to be asked. XV. (Word limit 200-250 words). Long answer type questions: 03 questions carrying 08 marks each to be asked. (Word xvi. limit 500-600 words). Introduction: What is mobile Application Programming, different Platforms, architecture and working of Android, iOS and Windows phone 8 operating system, comparison of Android, iOS and Windows phone 8. Android Development Environment: What is Android, Advantages and Future **UNIT-1 5Hours** of Android, Tools and about Android SDK, Installing Java, Eclipse, and Android, Android Software Development Kit for Eclipse, Android Development Tool: Android Tools for Eclipse, AVDs: Smartphone Emulators, Image Editing Android Software Development Platform: Understanding Java SE and the Dalvik Virtual Machine, directory Structure of an Android Project, common Default Resources Folders, the Values Folder, Leveraging Android XML, Screen Sizes, Launching your application: The AndroidManifest.xml File, Creating your First Android Application Android Framework Overview: The Foundation of OOP, the APK File, Android UNIT-2 **OHours** Application Components, Android Activities: Defining the User Interface, Android Services: Processing in the Background, Broadcast Receivers: Announcements and Notifications, Content Providers: Data Management, Android Intent Objects: Messaging for Components, Android Manifest XML: Declaring Your Components Views and Layouts, Buttons, Menus, and Dialogs, Graphics Resources in Android: Introducing the Drawables, Implementing Images, Core Drawable Subclasses, Using Bitmap, PNG, JPEG and GIF Images in Android, Creating Animation in Android Handling User Interface (UI) Events: An Overview of UI Events in Android, Listening for and Handling Events, Handling UI Events via the 20 Hours **UNIT-3** View Class, Event Callback Methods, Handling Click Events, Touchscreen events, Keyboard Events, Context Menus, Controlling the Focus.

	Contant Providence An Overview of Android Content Providers Defining			
	Content Providers: An Overview of Android Content Providers, Defining a Content Provider, Working with a Database			
	Intents and Intent Filters: What is an Intent, Implicit Intents and Explicit Intents, Intents with Activities, Intents with Broadcast Receivers			
	Advanced Android, and New Features in Android 4.4. iOS Development			
4 s	Environment: Overview of iOS, iOS Layers, Introduction to iOS			
UNIT-4 20Hrs	application development.			
20 C	Windows phone Environment: Overview of windows phone and its platform,			
	Building windowsphone application			
	Introduction to VHDL: Structure of HDL Module, Comparison of VHDL			
	and Verilog, Introduction to Simulation and Synthesis Tools, Test Benches. VHDL			
	Modules, Delays, data flow style, behavioral style, structural style, mixed design			
	style, simulating design. Introduction to Language Elements, Keywords,			
	Identifiers, White Space Characters, Comments, format. VHDL terms, describing			
Ś	hardware in VHDL, entity, architectures, concurrent signal assignment, event			
IT	scheduling, statement concurrency, structural designs, sequential behavior, process			
UNIT- 15Hrs	statements, process execution, sequential statements, architecture selection,			
	configuration statements			
	1. Beginning Android 4, OnurCinar, Apress Publication			
	2. Professional Android 4 Application Development, Reto Meier, Wrox			
	3. Beginning iOS 6 Development: Exploring the iOS SDK, David Mark,			
	Apress			
	4. Beginning Windows 8 Application Development, IstvánNovák,			
Ś	Zoltan Arvai, György Balássy and David Fulop			
INGS	5. Professional Windows 8 Programming: Application			
	Development with C# and XML, Allen Sanders and Kevin			
EA	Ashley, Wrox Publication			
R	6. Programming with Mobile Applications: Android, iOS, and			
ED	Windows Phone 7 ,Thomas Duffy, Course Technology,			
LS	Cengage Learning 2013			
Ë	7. A VHDL Primer –J. Bhasker, Prentice Hall, 1999, III			
U U U U	Edition. Verilog HDL-A guide to digital design and			
SUGGESTED READ	synthesis-Samir Palnitkar, Pearson, 2nd edition.			
	1.			

B.Sc. (ELECTRONICS) SIXTH SEMESTER

PAPER CODE: ELE602

PAPER TITLE: ELECTRONICS PRACTICAL LAB-III

MARKS:50 THEORY:

00 PRACTICAL: 50

- INDUSTRIAL ELECTRONICS & PCB Design LAB (Hardware and Circuit Simulation Software) Max.Marks:25
 - 1. Study of I-V characteristics of DIAC
 - 2. Study of I-V characteristics of a TRIAC
 - 3. Study of I-V characteristics of a SCR
 - 4. SCR as a half wave and full wave rectifiers with R and RL loads
 - 5. DC motor control using SCR.
 - 6. DC motor control using TRIAC.
 - 7. AC voltage controller using TRIAC with UJT triggering.
 - 8. Study of parallel and bridge inverter.
 - 9. Design of snubber circuit
 - 10. Study of chopper circuits

Design and Fabrication of Printed Circuit Boards

- Design automation, Design Rule Checking; Exporting Drill and Gerber Files; Drills; Footprints and Libraries Adding and Editing Pins, copper clad laminates materials of copperclad laminates, properties of laminates (electrical & physical),
- 2. Study of soldering techniques. Film master preparation, Image transfer, photo printing, Screen Printing, Plating techniques etching techniques,
- **3.** Study of Mechanical Machining operations, Lead cutting and Soldering Techniques, Testingand quality controls.
- 4. Study of Lead cutting and Soldering Techniques, Testing and quality controls.1.

MM-25

COURSE CODE: UD1

ELB 304 P: Mobile Application & VHDL Lab

M. - 25Mobile communication Lab

- Develop an application that uses GUI components, Font and Colors.
- Develop an application that uses Layout Managers and event listeners.
- Develop a native calculator application.
- Write an application that draws basic graphical primitives on the screen.
- Develop an application that makes use of database.
- Develop an application that makes use of RSS Feed.
- Implement an application that implements Multi-threading.
- Develop a native application that uses GPS location information.
- Implement an application that writes data to the SD card.
- Implement an application that creates an alert upon receiving a message.
- Write a mobile application that creates alarm clock.

Introduction to VHDL

- Write the VHDL Code & Simulate it for the following gates.
 - Two I/P AND Gates.
 - Two I/P OR Gates.
 - Two I/P NAND Gates
 - Two I/P NOR Gates.
 - Two I/P Ex-OR Gates.
 - NOT Gates
- Write VHDL programs for the following circuits, check the wave forms and thehardware generated
 - Half adder b. Full adder